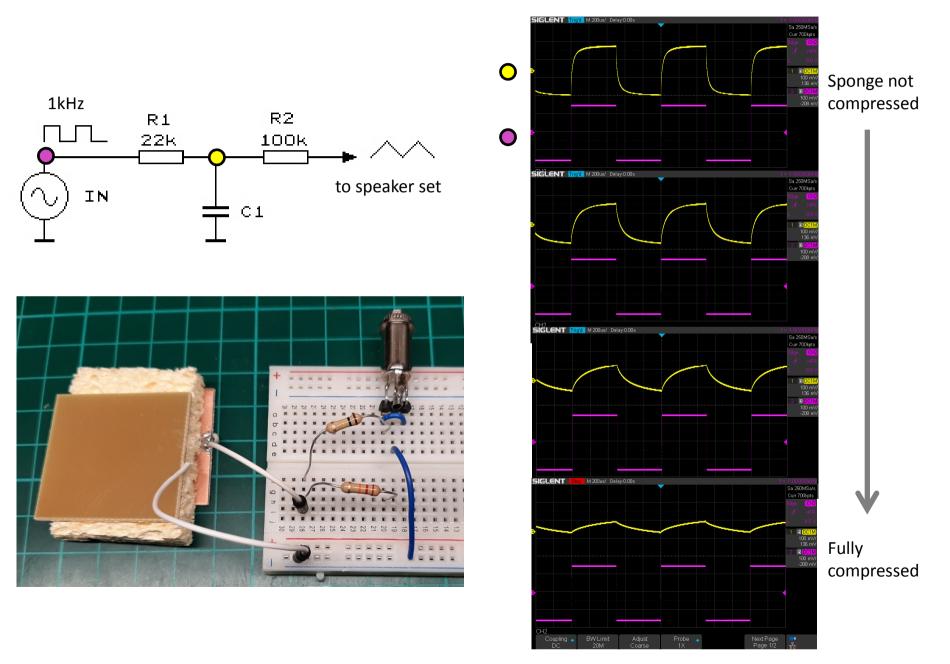
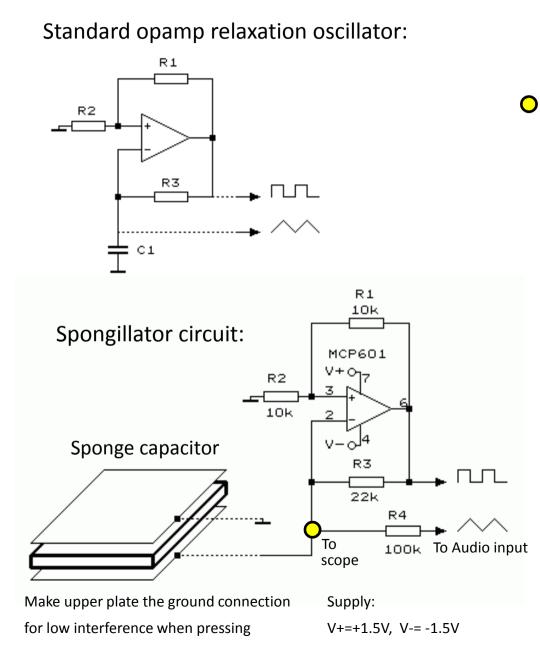

Spongetronics electronics use for sponge material

Sponge material (cellulose based) shows an extremely high diëlectric constant that increases further when compressed. A capacitor can be made by clamping the material between two metal plates. With 2 wires connected to the plates this construction can be used as a pressure-controlled capacitor.

A test on a dry sponge slice of roughly 4x3 cm and 0.8cm thickness (see pictures) resulted in a uncompressed capacitance of <1nF and a compressed value of nearly 100nF !! Note that this capacitor has a relatively high series resistance and a high leakage, more on this on page 4

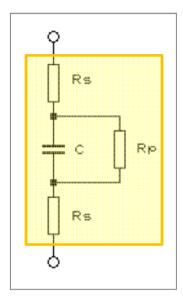



•Two circuits were build using this capacitor, also shown in a movie https://youtu.be/BFPNdyaWR40

- 1- a tunable lowpass filter
- 2- a tunable oscillator (Spongillator)

Spongetronics a tunable lowpass filter:

Spongetronics a tunable oscillator (spongillator):



Sponge not compressed

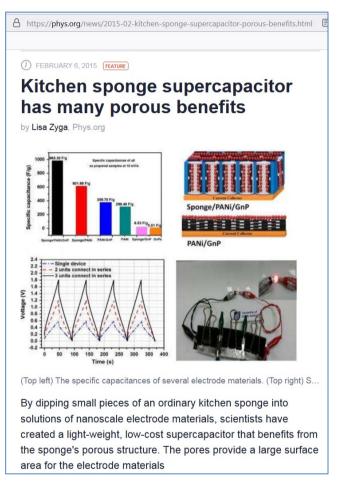
Spongetronics sponge background info

The sponge capacitor has relative high series resistance and large leakage, both also pressure dependant. These could be modelled like this:

No exact data, but for the (dry) sponge slices I used (4 x 3 x 0.8 cm)rough estimates are:compresseduncompressedRs : 0.1k $5k\Omega$ Rp: $50k \Omega$ $1M\Omega$ C: 100nF0.5nF

Hint: to prevent leakage resistor dc-shifts when using this in a single supply circuit, connect one terminal to Vsup/2 instead of connecting to ground.

Note that only the cellulose based sponge works for this application:


Cellulose based works:

Plastic based fails:

Additional reading for more serious applications:

IOP Publishing

Nanotechnology 26 (2015) 075702 (11pp)

Nanotechnology doi:10.1088/0957-4484/26/7/075702

High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge

Mahmoud Moussa^{1,2}, Maher F El-Kady^{3,4}, Hao Wang⁶, Andrew Michimore¹, Qinqin Zhou⁵, Jian Xu⁶, Peter Majeswki¹ and Jun Ma¹

¹Mawson Institute and School of Engineering, University of South Australia, Mawson Lakes SA5095, Australia

- ² Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62111, Egypt ³ Department of Chemistry and Biochemistry and California NanoSystems Institute, University of
- California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- ⁴Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- ⁵Chemistry Department, Tsinghua University, Beijing 100180, People's Republic of China
- ⁶ Institute of Chemistry, Chinese Academy of Sciences, Beijing 100180, People's Republic of China

some links:

https://phys.org/news/2015-02-kitchen-sponge-supercapacitor-porous-benefits.html https://iopscience.iop.org/article/10.1088/0957-4484/26/7/075702 https://www.researchgate.net/publication/271536256_Highperformance_supercapacitors_ using_graphenepolyaniline_composites_deposited_on_kitchen_sponge https://www.researchgate.net/publication/231014778_Giant_Dielectric_Response_of_the_Sponge_Phase